Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(20): 11938-11947, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36370103

RESUMO

Some transcription factors bind DNA motifs containing direct or inverted sequence repeats. Preference for each of these DNA topologies is dictated by structural constraints. Most prokaryotic regulators form symmetric oligomers, which require operators with a dyad structure. Binding to direct repeats requires breaking the internal symmetry, a property restricted to a few regulators, most of them from the AraC family. The KorA family of transcriptional repressors, involved in plasmid propagation and stability, includes members that form symmetric dimers and recognize inverted repeats. Our structural analyses show that ArdK, a member of this family, can form a symmetric dimer similar to that observed for KorA, yet it binds direct sequence repeats as a non-symmetric dimer. This is possible by the 180° rotation of one of the helix-turn-helix domains. We then probed and confirmed that ArdK shows affinity for an inverted repeat, which, surprisingly, is also recognized by a non-symmetrical dimer. Our results indicate that structural flexibility at different positions in the dimerization interface constrains transcription factors to bind DNA sequences with one of these two alternative DNA topologies.


Assuntos
DNA , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Sequência de Bases , Sequência de Aminoácidos , Sequências Hélice-Volta-Hélice , DNA/química , Inversão de Sequência , Sítios de Ligação
2.
Int J Food Microbiol ; 371: 109670, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35427955

RESUMO

High throughput sequencing has recently revealed the presence of Tetragenococcus-related DNA sequences in dairy environments such as brine and cheeses. In the present work, a selective medium was developed to isolate Tetragenococcus spp. from two ripened, traditional, Spanish, blue-veined cheese varieties made from raw milk. The strains recovered belonged to either Tetragenococcus koreensis or Tetragenococcus halophilus species. Twenty of these isolates (15 of T. koreensis and 5 of T. halophilus) were then subjected to a battery of phenotypic and genetic tests, and six strains (4 T. koreensis and 2 T. halophilus) to genome sequencing. Wide genetic and phenotypic diversity was noted. All strains grew poorly in milk, producing small quantities of lactic and acetic acids. Most strains used lactose as a carbon source and ferment milk citrate. In agreement, genome analysis detected in the genome of the six strains analyzed gene clusters harboring several lactose/galactose-related genes and genes encoding citrate metabolic enzymes (permease, citrate lyase, and oxaloacetate decarboxylase). Most of the tested strains were resistant to erythromycin and clindamycin, and a few to other antimicrobial agents, but neither known mutations nor acquired genes conferring resistance to antibiotics were identified in their genomes. Neither were genes coding for pathogenicity or virulence factors detected. Decarboxylase-encoding genes involved in biogenic amine production were not identified, in keeping with the strains' negative biogenic amine-producer phenotype. Genome comparison revealed vast arrays of genes (similar in number to those described in other lactic acid bacteria) coding for components of proteolytic and lipolytic systems. Tetragenococcus strains showing desirable traits plus the absence of detrimental features might be exploitable in the form of secondary, adjunct or ripening cultures to ensure the typical bouquet of traditional blue-veined cheeses is obtained, or to diversify the final flavor in other varieties.


Assuntos
Queijo , Animais , Aminas Biogênicas/metabolismo , Queijo/microbiologia , Citratos/metabolismo , Enterococcaceae , Genômica , Lactose/metabolismo , Leite/microbiologia , Fenótipo
3.
mBio ; 12(4): e0127721, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34425705

RESUMO

Plasmid conjugation is a major route for the spread of antibiotic resistance genes. Inhibiting conjugation has been proposed as a feasible strategy to stop or delay the propagation of antibiotic resistance genes. Several compounds have been shown to be conjugation inhibitors in vitro, specifically targeting the plasmid horizontal transfer machinery. However, the in vivo efficiency and the applicability of these compounds to clinical and environmental settings remained untested. Here we show that the synthetic fatty acid 2-hexadecynoic acid (2-HDA), when used as a fish food supplement, lowers the conjugation frequency of model plasmids up to 10-fold in controlled water microcosms. When added to the food for mice, 2-HDA diminished the conjugation efficiency 50-fold in controlled plasmid transfer assays carried out in the mouse gut. These results demonstrate the in vivo efficiency of conjugation inhibitors, paving the way for their potential application in clinical and environmental settings. IMPORTANCE The spread of antibiotic resistance is considered one of the major threats for global health in the immediate future. A key reason for the speed at which antibiotic resistance spread is the ability of bacteria to share genes with each other. Antibiotic resistance genes harbored in plasmids can be easily transferred to commensal and pathogenic bacteria through a process known as bacterial conjugation. Blocking conjugation is thus a potentially useful strategy to curtail the propagation of antibiotic resistance. Conjugation inhibitors (COINS) are a series of compounds that block conjugation in vitro. Here we show that COINS efficiently block plasmid transmission in two controlled natural environments, water microcosms and the mouse gut. These observations indicate that COIN therapy can be used to prevent the spread of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Escherichia coli/genética , Microbioma Gastrointestinal/genética , Plasmídeos/genética , Alcinos/administração & dosagem , Ração Animal , Animais , Escherichia coli/efeitos dos fármacos , Ácidos Graxos Insaturados/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Técnicas de Transferência de Genes , Transferência Genética Horizontal , Camundongos , Camundongos Endogâmicos C57BL , Rios/microbiologia
4.
BMC Bioinformatics ; 22(1): 390, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332528

RESUMO

BACKGROUND: Plasmids are mobile genetic elements, key in the dissemination of antibiotic resistance, virulence determinants and other adaptive traits in bacteria. Obtaining a robust method for plasmid classification is necessary to better understand the genetics and epidemiology of many pathogens. Until now, plasmid classification systems focused on specific traits, which limited their precision and universality. The definition of plasmid taxonomic units (PTUs), based on average nucleotide identity metrics, allows the generation of a universal plasmid classification scheme, applicable to all bacterial taxa. Here we present COPLA, a software able to assign plasmids to known and novel PTUs, based on their genomic sequence. RESULTS: We implemented an automated pipeline able to assign a given plasmid DNA sequence to its cognate PTU, and assessed its performance using a sample of 1000 unclassified plasmids. Overall, 41% of the samples could be assigned to a previously defined PTU, a number that reached 63% in well-known taxa such as the Enterobacterales order. The remaining plasmids represent novel PTUs, indicating that a large fraction of plasmid backbones is still uncharacterized. CONCLUSIONS: COPLA is a bioinformatic tool for universal, species-independent, plasmid classification. Offered both as an automatable pipeline and an open web service, COPLA will help bacterial geneticists and clinical microbiologists to quickly classify plasmids.


Assuntos
Transferência Genética Horizontal , Genômica , Resistência Microbiana a Medicamentos , Plasmídeos/genética , Fatores de Virulência
5.
J Clin Med ; 10(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070019

RESUMO

Changes in the gut microbiome have been associated with inflammatory bowel disease. A protective role of short chain fatty acids produced by the gut microbiota has been suggested as a causal mechanism. Nevertheless, multi-omic analyses have failed to identify a clear link between changes in specific taxa and disease states. Recently, metagenomic analyses unveiled that gut bacterial species have a previously unappreciated genomic diversity, implying that a geno-centric approach may be better suited to identifying the mechanisms involved. Here, we quantify the abundance of terminal genes in propionate-producing fermentative pathways in the microbiome of a large cohort of healthy subjects and patients with inflammatory bowel disease. The results show that propionate kinases responsible for propionate production in the gut are depleted in patients with Crohn's disease. Our results also indicate that changes in overall species abundances do not necessarily correlate with changes in the abundances of metabolic genes, suggesting that these genes are not part of the core genome. This, in turn, suggests that changes in strain composition may be as important as changes in species abundance in alterations of the gut microbiome associated with pathological conditions.

6.
Nat Commun ; 11(1): 3602, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681114

RESUMO

Plasmids can mediate horizontal gene transfer of antibiotic resistance, virulence genes, and other adaptive factors across bacterial populations. Here, we analyze genomic composition and pairwise sequence identity for over 10,000 reference plasmids to obtain a global map of the prokaryotic plasmidome. Plasmids in this map organize into discrete clusters, which we call plasmid taxonomic units (PTUs), with high average nucleotide identity between its members. We identify 83 PTUs in the order Enterobacterales, 28 of them corresponding to previously described archetypes. Furthermore, we develop an automated algorithm for PTU identification, and validate its performance using stochastic blockmodeling. The algorithm reveals a total of 276 PTUs in the bacterial domain. Each PTU exhibits a characteristic host distribution, organized into a six-grade scale (I-VI), ranging from plasmids restricted to a single host species (grade I) to plasmids able to colonize species from different phyla (grade VI). More than 60% of the plasmids in the global map are in groups with host ranges beyond the species barrier.


Assuntos
Gammaproteobacteria/genética , Transferência Genética Horizontal , Plasmídeos/genética , Algoritmos , Gammaproteobacteria/classificação , Genômica , Filogenia
7.
J Clin Med ; 9(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392712

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease in which environmental and genetic factors are involved. Although the molecular mechanisms involved in NAFLD onset and progression are not completely understood, the gut microbiome (GM) is thought to play a key role in the process, influencing multiple physiological functions. GM alterations in diversity and composition directly impact disease states with an inflammatory course, such as non-alcoholic steatohepatitis (NASH). However, how the GM influences liver disease susceptibility is largely unknown. Similarly, the impact of strategies targeting the GM for the treatment of NASH remains to be evaluated. This review provides a broad insight into the role of gut microbiota in NASH pathogenesis, as a diagnostic tool, and as a therapeutic target in this liver disease. We highlight the idea that the balance in metabolic fermentations can be key in maintaining liver homeostasis. We propose that an overabundance of alcohol-fermentation pathways in the GM may outcompete healthier, acid-producing members of the microbiota. In this way, GM ecology may precipitate a self-sustaining vicious cycle, boosting liver disease progression.

8.
Crit Rev Biotechnol ; 40(3): 292-305, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31931630

RESUMO

Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, often pose a serious risk not only when delivered in the bloodstream but also in air, the environment and several industrial fields such as pharmaceutics or food. LPS is constituted of three regions; the O-specific chain, the core region and the lipid A, which is the responsible segment of the toxicity. Previous literature dealt with the study of lipid A, its potential ligands as well as the mechanisms of Lipid A interactions that, among other applications, establish the basis for detection methods such as Limulus Amebocyte Lysate (LAL) assays and emerging biosensoring techniques. However, quantifying LPS binding affinity is an urgent need that still requires thorough studies. In this context, this work reviews the molecules that bind LPS, highlighting quantitative affinity parameters. Moreover, state of the art methods to analyze the affinity and kinetics of lipid-ligand interactions are also reviewed and different techniques have been briefly described. Thus, first, we review existing information on LPS ligands, classifying them into three main groups and targeting the comparison of molecules in terms of their interaction affinities and, second, we establish the basis for further research aimed at the development of effective methods for LPS detection and removal.


Assuntos
Proteínas de Transporte/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/metabolismo , Bactérias Gram-Negativas/metabolismo , Humanos , Sistema Imunitário/metabolismo , Lipídeo A/metabolismo , Conformação Proteica
9.
Methods Mol Biol ; 2075: 93-98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31584156

RESUMO

Plasmid conjugation is intimately linked to the transmission of antibiotic resistances, and many naturally occurring plasmids carry antibiotic resistance genes. Here we describe classical methods based on the transmission of antibiotic resistance determinants routinely used to quantify plasmid conjugation under laboratory conditions. Methods described here are suitable for most plasmid incompatibility groups from Proteobacteria and can be readily adapted to other bacterial species.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/genética , Conjugação Genética , Resistência Microbiana a Medicamentos , Plasmídeos/genética , Antibacterianos/farmacologia
10.
Methods Mol Biol ; 2075: 99-110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31584157

RESUMO

Fluorescence-based methods are increasingly popular because they (1) offer a faster alternative to labor-intensive traditional methods, (2) enable the development of automated high-throughput screening procedures, and (3) allow direct visualization of biological processes. Here we describe three fluorescence-based methods applicable for the detection and quantitation of plasmid conjugation. The first method uses flow cytometry as a fast and reliable alternative to traditional plating methods. A second one employs fluorescence expression for high-throughput analysis of plasmid conjugation. Finally we review a third method that enables direct visualization of plasmid transfer under the microscope.


Assuntos
Bactérias/genética , Conjugação Genética , Genes Reporter , Imagem Óptica/métodos , Plasmídeos/genética , Bactérias/metabolismo , Citometria de Fluxo , Imunofluorescência , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos
11.
Sci Adv ; 4(11): eaat5771, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30498777

RESUMO

In the cell, noise constrains information transmission through signaling pathways and regulatory networks. There is growing evidence that the channel capacity of cellular pathways is limited to a few bits, questioning whether cells quantify external stimuli or rely on threshold detection and binary on/off decisions. Here, using fluorescence microscopy and information theory, we analyzed the ability of the transcriptional regulator TetR to sense and quantify the antibiotic tetracycline. The results showed that noise filtering by negative feedback increased information transmission up to 2 bits, generating a graded response able to discriminate different antibiotic concentrations. This response matched the antibiotic subinhibitory selection window, suggesting that information transmission through TetR is optimized to quantify sublethal antibiotic levels. Noise filtering by negative feedback may thus boost the discriminative power of cellular sensors, enabling signal quantification.


Assuntos
Antibacterianos/farmacologia , Bactérias/metabolismo , Retroalimentação Fisiológica , Redes Reguladoras de Genes/efeitos dos fármacos , Teoria da Informação , Transativadores/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Simulação por Computador , Modelos Biológicos , Transdução de Sinais , Transativadores/genética
12.
Curr Opin Microbiol ; 38: 106-113, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28586714

RESUMO

Conjugative plasmids are the keystone of horizontal gene transfer. Metagenomic research and clinical understanding of plasmid transmission beg for a taxonomical approach to conjugative plasmid classification. Up to now, a meaningful classification was difficult to achieve for lack of appropriate analytical tools. The advent of the genomic era revolutionized the landscape, offering a plethora of plasmid sequences as well as bioinformatic analytical tools. Given the need and the opportunity, in view of the available evidence, a taxonomy of conjugative plasmids is proposed in the hope that it will leverage plasmid studies.


Assuntos
Conjugação Genética , Plasmídeos/classificação , Transferência Genética Horizontal , Plasmídeos/análise
13.
Front Mol Biosci ; 3: 71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27891505

RESUMO

The F plasmid is the foremost representative of a large group of conjugative plasmids, prevalent in Escherichia coli, and widely distributed among the Enterobacteriaceae. These plasmids are of clinical relevance, given their frequent association with virulence determinants, colicins, and antibiotic resistance genes. Originally defined by their sensitivity to certain male-specific phages, IncF plasmids share a conserved conjugative system and regulatory circuits. In order to determine whether the genetic architecture and regulation circuits are preserved among these plasmids, we analyzed the natural diversity of F-like plasmids. Using the relaxase as a phylogenetic marker, we identified 256 plasmids belonging to the IncF/ MOBF12group, present as complete DNA sequences in the NCBI database. By comparative genomics, we identified five major groups of F-like plasmids. Each shows a particular operon structure and alternate regulatory systems. Results show that the IncF/MOBF12 conjugation gene cluster conforms a diverse and ancient group, which evolved alternative regulatory schemes in its adaptation to different environments and bacterial hosts.

15.
Nat Commun ; 7: 11641, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189321

RESUMO

Many key regulatory proteins in bacteria are present in too low numbers to be detected with conventional methods, which poses a particular challenge for single-cell analyses because such proteins can contribute greatly to phenotypic heterogeneity. Here we develop a microfluidics-based platform that enables single-molecule counting of low-abundance proteins by mechanically slowing-down their diffusion within the cytoplasm of live Escherichia coli (E. coli) cells. Our technique also allows for automated microscopy at high throughput with minimal perturbation to native physiology, as well as viable enrichment/retrieval. We illustrate the method by analysing the control of the master regulator of the E. coli stress response, RpoS, by its adapter protein, SprE (RssB). Quantification of SprE numbers shows that though SprE is necessary for RpoS degradation, it is expressed at levels as low as 3-4 molecules per average cell cycle, and fluctuations in SprE are approximately Poisson distributed during exponential phase with no sign of bursting.


Assuntos
Proteínas de Bactérias/fisiologia , Citoplasma/química , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Dispositivos Lab-On-A-Chip , Fator sigma/fisiologia , Fatores de Transcrição/fisiologia , Difusão , Regulação Bacteriana da Expressão Gênica/fisiologia , Pressão
16.
PLoS One ; 11(1): e0148098, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26812051

RESUMO

Bacterial conjugation is the main mechanism for the dissemination of multiple antibiotic resistance in human pathogens. This dissemination could be controlled by molecules that interfere with the conjugation process. A search for conjugation inhibitors among a collection of 1,632 natural compounds, identified tanzawaic acids A and B as best hits. They specially inhibited IncW and IncFII conjugative systems, including plasmids mobilized by them. Plasmids belonging to IncFI, IncI, IncL/M, IncX and IncH incompatibility groups were targeted to a lesser extent, whereas IncN and IncP plasmids were unaffected. Tanzawaic acids showed reduced toxicity in bacterial, fungal or human cells, when compared to synthetic conjugation inhibitors, opening the possibility of their deployment in complex environments, including natural settings relevant for antibiotic resistance dissemination.


Assuntos
Produtos Biológicos/farmacologia , Conjugação Genética/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Naftalenos/farmacologia , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Produtos Biológicos/síntese química , Produtos Biológicos/química , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácidos Graxos Insaturados/síntese química , Ácidos Graxos Insaturados/química , Células HCT116 , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Naftalenos/síntese química , Naftalenos/química , Plasmídeos/genética , Plasmídeos/metabolismo
17.
mBio ; 6(5): e01032-15, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26330514

RESUMO

UNLABELLED: Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. IMPORTANCE: Diseases caused by multidrug-resistant bacteria are taking an important toll with respect to human morbidity and mortality. The most relevant antibiotic resistance genes come to human pathogens carried by plasmids, mainly using conjugation as a transmission mechanism. Here, we identified and characterized a series of compounds that were active against several plasmid groups of clinical relevance, in a wide variety of bacterial hosts. These inhibitors might be used for fighting antibiotic-resistance dissemination by inhibiting conjugation. Potential inhibitors could be used in specific settings (e.g., farm, fish factory, or even clinical settings) to investigate their effect in the eradication of undesired resistances.


Assuntos
Conjugação Genética/efeitos dos fármacos , Ácidos Graxos/metabolismo , Transferência Genética Horizontal/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Plasmídeos/metabolismo , Ácidos Graxos/síntese química , Bactérias Gram-Negativas/genética
18.
Front Microbiol ; 6: 648, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26191047

RESUMO

Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.

19.
PLoS Genet ; 10(2): e1004171, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586200

RESUMO

Horizontal gene transfer (HGT) is a major force driving bacterial evolution. Because of their ability to cross inter-species barriers, bacterial plasmids are essential agents for HGT. This ability, however, poses specific requisites on plasmid physiology, in particular the need to overcome a multilevel selection process with opposing demands. We analyzed the transcriptional network of plasmid R388, one of the most promiscuous plasmids in Proteobacteria. Transcriptional analysis by fluorescence expression profiling and quantitative PCR revealed a regulatory network controlled by six transcriptional repressors. The regulatory network relied on strong promoters, which were tightly repressed in negative feedback loops. Computational simulations and theoretical analysis indicated that this architecture would show a transcriptional burst after plasmid conjugation, linking the magnitude of the feedback gain with the intensity of the transcriptional burst. Experimental analysis showed that transcriptional overshooting occurred when the plasmid invaded a new population of susceptible cells. We propose that transcriptional overshooting allows genome rebooting after horizontal gene transfer, and might have an adaptive role in overcoming the opposing demands of multilevel selection.


Assuntos
Transferência Genética Horizontal , Plasmídeos/genética , Proteobactérias/genética , Seleção Genética/genética , Simulação por Computador , Evolução Molecular , Redes Reguladoras de Genes , Genoma Bacteriano
20.
Mob Genet Elements ; 4(6): 1-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26442172

RESUMO

Horizontal Gene Transfer (HGT) is one of the key mechanisms driving bacterial evolution. Conjugative plasmids are fundamental vehicles for HGT in bacteria, playing an essential role in the spread of antibiotic resistances. Although the classical view has stressed the instrumental role of these mobile genetic elements in the dissemination of antibiotic resistance genes, plasmids contain a rich physiology devoted to horizontal and vertical reproduction. This particular lifestyle imposes specific constrains and trade-offs on plasmid physiology, and plasmids have evolved dedicated circuits to balance the opposing demands of vertical and horizontal reproduction. Recent studies on the transcriptional networks of IncW plasmids and other incompatibility groups have unveiled common architectures in the regulatory networks of different plasmid groups. Comparative studies show that negative feedback loops (NFLs) with strong gains are preferred, opening the question of a possible convergent evolution dictated by certain adaptive properties of this particular network motif. System analysis of NFLs with strong feedback gains indicate that this architecture exhibits transient overshooting after horizontal gene transfer. Since plasmid burden is dependent on the expression of plasmid functions, transcriptional overshooting results in a transient increase of the burden immediately after conjugation. We discuss the possible implications of this phenomenon on plasmid propagation, and the regulatory networks that plasmids have evolved to counteract the detrimental side effects of transient overshooting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...